skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Cingolani, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cingolani, G (Ed.)
    Large icosahedral viruses and tailed bacteriophages encode a portal protein that assembles into a dodecameric ring and occupies one of the twelve five-fold-symmetric vertices of a viral capsid. This unique symmetry-mismatched and structurally conserved portal vertex is essential for head assembly, genome packaging, neck/tail attachment, and genome ejection, but the underlying mechanisms remain poorly understood. Here, we present evidence that the phage T4 portal functions as a global assembly communicator and signal transducer, with its basket-shaped channel containing twenty-four anti-parallel helices at its core. Disruption of a single inter-helical salt-bridge that connects helices in a circular brace impairs channel movements that might be essential for a DNA grip-release mechanism during genome translocation. Second and third site suppressors that compensate for this defect fall in distant portal and packaging motor domains that together form a sophisticated communication network. Such networks might underlie the structural frameworks of macromolecular assemblies in biological systems. 
    more » « less